Neural Bayes estimation and selection of complex bivariate extremal dependence models Extreme Value Analysis Conference 2025

Lídia André

Jenny Wadsworth and Raphaël Huser

26th June 2025

Likelihood inference

- Requires the knowledge of a likelihood function
- Might be computationally costly when there is
 - inversion of functions;
 - numerical integration;
- Examples:
 - Weighted copula model (André et al., 2024)
 - Models that are available to **interpolate** between two classes of extremal dependence (Wadsworth et al., 2017; Huser and Wadsworth, 2019; Engelke et al., 2019)
- **Goal:** toolbox for simple fitting and selection of complex bivariate extremal dependence models

Point estimation

- General setting:
 - Replicate data: $\mathbf{Z} := (\mathbf{Z}_1', \dots, \mathbf{Z}_n')' \in \mathcal{S}^n$ where $\mathbf{Z}_i \sim f(\mathbf{z}_i \mid \boldsymbol{\theta})$
 - Sampling space: $\mathcal{S} = \mathbb{R}^d$
 - Parameter space: $\Theta = \mathbb{R}^p$
- Point estimators: $\hat{\boldsymbol{\theta}}: \mathcal{S}^n \to \Theta$
- Bayes estimators: minimise a weighted average of the risk at θ (Bayes risk)

$$r_{\Omega}(\hat{\boldsymbol{\theta}}(\cdot)) = \int_{\Theta} \int_{\mathcal{S}^n} L(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}(\boldsymbol{z})) f(\boldsymbol{z} \mid \boldsymbol{\theta}) d\boldsymbol{z} d\Omega(\boldsymbol{\theta})$$

- $\Omega(\cdot)$: prior measure for θ
- $L(\theta, \hat{\theta}(z))$: absolute error loss

Neural Bayes estimators (Sainsbury-Dale et al., 2024)

- Bayes estimator that is approximated using a neural network as function approximator
- ullet Neural point estimator: $\hat{ heta}(extbf{\emph{Z}}\mid \gamma)$
 - γ : parameters of the neural network
- ullet Neural Bayes estimator (NBE): $\hat{ heta}(oldsymbol{Z}\mid \gamma^*)$

$$\gamma^* = rg \min_{oldsymbol{\gamma}} \mathit{r}_{\Omega}(\hat{oldsymbol{ heta}}(\cdot;oldsymbol{\gamma}))$$

- NBEs just need to be trained once!
 - subsequent estimates are obtained in (milli)seconds

Neural Network architecture

ullet For any permutation $ilde{oldsymbol{Z}}$ of the independent replicates in $oldsymbol{Z}$:

$$\hat{ heta}(extbf{ ilde{Z}};\gamma)=\hat{ heta}(ilde{ ilde{Z}};\gamma)$$

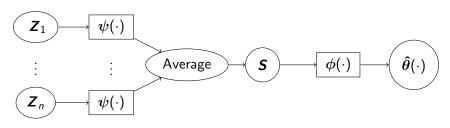


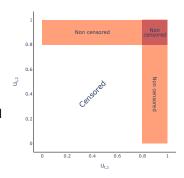
Figure 1: Schematic of the DeepSets architecture (Zaheer et al., 2017). $\psi: \mathbb{R}^d \to \mathbb{R}^q$ and $\phi: \mathbb{R}^q \to \mathbb{R}^p$ are neural networks, and \boldsymbol{S} are summary statistics.

Lídia André NBE / NBC 26th June 2025

NBEs for censored data (Richards et al., 2023)

Censor non-extreme values to prevent them affecting the extremal dependence estimation

- $Z^* = ((Z_1^*)', \dots, (Z_n^*)')'$
- ullet Censored values set to $c \in \mathbb{R}$ outside the support
- Ii: indicator vectors
 - if 1 then the observations are censored
 - information about the number of censoring observations



NBEs for censored data (Richards et al., 2023)

- ullet NBEs are trained using an augmented data set $m{A}=((m{Z}^*)',m{I}')$
- ullet Censoring level au is treated as **variable**

$$\hat{ heta}(extbf{ extit{A}}; au, \gamma) = \phi\left(extbf{ extit{S}}(extbf{ extit{A}}; \gamma_{oldsymbol{\psi}}, au); \gamma_{oldsymbol{\phi}}
ight)$$

with $\mathbf{S}(\mathbf{A}; \boldsymbol{\gamma}_{\boldsymbol{\psi}}, \tau) = \left(\mathbf{S}(\mathbf{A}; \boldsymbol{\gamma}_{\boldsymbol{\psi}})', \tau\right)'$ and $\mathbf{S}(\mathbf{A}; \boldsymbol{\gamma}_{\boldsymbol{\psi}})$ defined as before

Lídia André NBE / NBC 26th June 2025 7 / 32

Parameter estimation: Model of Wadsworth et al. (2017)

$$(Z_1,Z_2)=R(V_1,V_2), \quad R \perp\!\!\!\!\perp (V_1,V_2)$$
 $R \sim \mathrm{GPD}(1,\xi) \ \mathrm{and} \ V \sim \mathrm{Beta}(lpha,lpha)$ $(V_1,V_2)'=rac{(V,1-V)'}{\mathsf{max}(V,1-V)} \in \Sigma$

with
$$\Sigma = \{ \mathbf{v} = (v_1, v_2)' \in \mathbb{R}^2_+ : \max(v_1, v_2) = 1 \}.$$

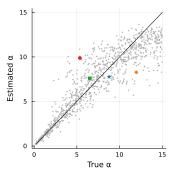
- $\xi > 0$: AD (asymptotic dependence)
- $\xi < 0$: Al (asymptotic independence)

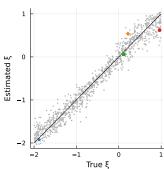
26th June 2025 NBE / NBC 8/32

- $\alpha \sim \text{Unif}(0.2, 15)$
- $\xi \sim \text{Unif}(-2, 1)$
- $T \sim \text{Unif}(0.5, 0.99)$
- $N \sim \text{Unif}(\{100, 101, \dots, 1500\})$

Sample size and censoring level are treated as random variables, ${\it N}$ and ${\it T}$ respectively.

Assessment of NBEs





Assessment of NBEs: Uncertainty quantification

- Non-parametric bootstrap procedure:
 - B = 400 bootstrap samples
 - \bullet θ is re-estimated
 - 95% confidence intervals are obtained
- Neural interval estimator:
 - trained under the quantile loss function: $L_q(\theta, \hat{\theta}) = \sum_{k=1}^p (\hat{\theta}_k \theta_k) (I_{(\hat{\theta}_k > \theta_k)} q)$, for probability quantiles $q = \{0.025, 0.975\}$
 - marginal 95% central credible intervals are approximated

Assessment of NBEs: Uncertainty quantification

Table 1: Coverage probability and average length of the 95% uncertainty intervals averaged over 1000 models fitted using a NBE.

Parameter	Bootstrap procedure		Interval estimator	
	Coverage	Length	Coverage	Length
α	0.76	3.59	0.96	6.68
ξ	0.84	0.49	0.98	0.81

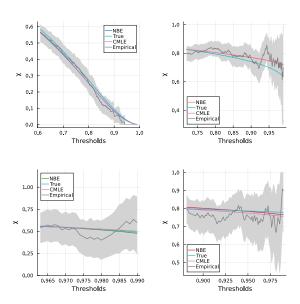
$$\chi = \lim_{u \to 1} \chi(u) = \lim_{u \to 1} \Pr(F_Y(Y) > u \mid \Pr(F_X(X) > u)$$

We have AD if $\chi > 0$ and AI if $\chi = 0$.

Table 2: Coverage probability and average length of the 95% confidence intervals for $\chi(u)$ at levels $u = \{0.80, 0.95, 0.99\}$ averaged over 1000 models fitted using a NBE.

$\chi(u)$	Coverage	Length
$\chi(0.80)$	0.91	0.06
$\chi(0.95)$	0.89	0.09
$\chi(0.99)$	0.88	0.09

Assessment of NBEs: Extremal structure



Comparison with censored MLE

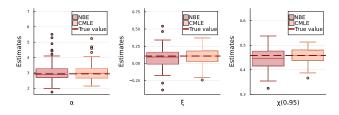


Figure 2: $\theta = (2.94, 0.11)'$ and $\tau = 0.79$.

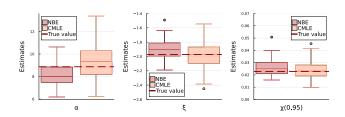


Figure 3: $\theta = (8.87, -1.97)'$ and $\tau = 0.60$.

Comparison with censored MLE

- Once trained, obtaining an estimate through this NBE takes on average 0.676 seconds.
- An estimate through censored MLE takes on average 92.611 seconds.
- This is about 137 times faster

Model selection: neural Bayes classifier (NBC)

- Information criteria like AIC/BIC cannot be used
- **Solution:** Treat model type as a random variable *M*
- M takes values in $\{1, \ldots, K\}$ for $K \ge 2$ candidate models
- M is inferred jointly with θ (based on Z): $(\theta', M)' \mid Z$
- ullet Can be decomposed as the product of $oldsymbol{ heta} \mid (oldsymbol{Z}',M)'$ and $M \mid oldsymbol{Z}$
- $\theta \mid (\mathbf{Z}', M)'$ is split into m problems: $\theta_m \mid (\mathbf{Z}', M = m)'$ trained with NBEs

Model selection: neural Bayes classifier (NBC)

- Construct a neural network that approximates $M \mid \mathbf{Z} = \mathbf{z}$ for any data input $\boldsymbol{Z} = z$
- Neural Bayes classifier (NBC): $\hat{p}(Z; \gamma)$

$$\gamma^* = \operatorname*{\mathsf{arg\,min}}_{\gamma} \, - \sum_{m=1}^K p_m \int_{\Omega_m} \int_{\mathcal{S}_m^n} \log \left(\hat{p}_m(oldsymbol{z}; \gamma) \right) f_m \left(oldsymbol{z} \mid oldsymbol{ heta}_m
ight) \mathrm{d} oldsymbol{z} \mathrm{d} \Omega_m(oldsymbol{ heta}_m)$$

- $p_m = \Pr(M = m) = 1/K$, and $\sum_{m=1}^{K} p_m = 1$
- $\hat{p}_m(z; \gamma)$: approximate posterior probability of model m

Lídia André NBE / NBC 26th June 2025

Model selection: neural Bayes classifier (NBC)

- Identical to a classification problem
- Loss function: categorical cross-entropy
- MLP similar to that of the parameter estimation procedure

K = 2 candidate models

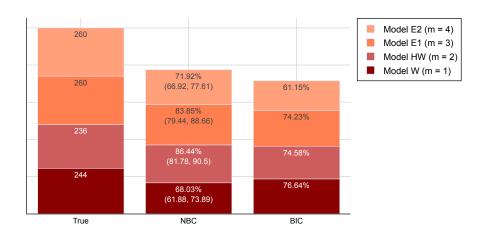
True

BIC

20 / 32

NBC

K = 4 candidate models



Misspecified scenarios

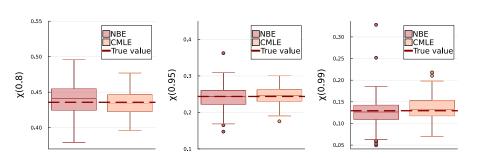
- ullet Data from a Gaussian copula with ho=0.5 (AI) and au=0.65
- 100 samples each with n = 1000

Table 3: Proportion of times each model was selected through the NBC and through BIC (left), and proportion of AD and AI samples identified by the NBE and CMLE (right).

Model	NBC	BIC
Model W	0.02	0.30
Model HW	0.88	0.69
Model E1	0.02	0.00
Model E2	0.08	0.01

Method	AD	Al
NBE	0.02	0.98
CMLE	0.03	0.97

Misspecified scenarios



Case study: changes in geomagnetic field fluctuations

- Space weather events cause large fluctuations in the geomagnetic field - geomagnetically induced currents (GICs)
- GICs can cause: disruptions on power grids, railway systems, etc
- Interest: assess whether a large magnitude of GICs occurring in one location has an effect on another location

- ullet n=1500 and $au \in \{0.60, 0.65, \ldots, 0.95\}-$ results for au = 0.85
- Pairs: (SCO, STF), (SCO, STJ) and (STF, STJ)

Table 4: International Association of Geomagnetism and Aeronomy (IAGA) code, and location of the observatory for the three locations considered.

IAGA code	Country	Latitude	Longitude
SCO	Greenland	70.48	-21.97
STF	Greenland	67.02	-50.72
STJ	Canada	47.60	-52.68

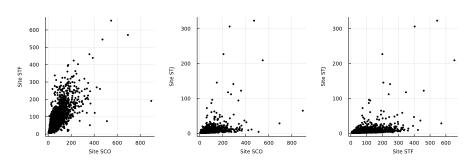


Figure 4: Daily maxima absolute one-minute changes in ${\rm d}B_H/{\rm d}t$ measurements between three pairs of locations: (SCO, STF) on the left, (SCO, STJ) in the middle, and (STF, STJ) on the right.

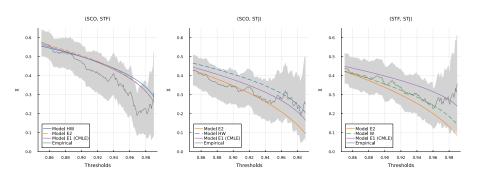


Figure 5: Empirical (in grey) and model $\chi(u)$ estimated via the NBE for $u \in [0.85, 0.99]$ for the models with the two highest posterior probabilities. Estimated model $\chi(u)$ for the selected model through BIC is given by the purple line. The 95% confidence bands were obtained by block boostrapping.

Conclusion: Advantages

- Robust and amortised statistical toolbox
- Fast inference method
- Well calibrated extremal dependence properties
- Sensitivity analysis for censoring level

Conclusion: Limitations

- Biased results
- Poor coverage of bootstrap-based uncertainty results
- Subjectivity in the neural network architecture
- Need to choose prior distributions

Thank you all for listening!

- André, L., Wadsworth, J., and O'Hagan, A. (2024). Joint modelling of the body and tail of bivariate data. *Computational Statistics and Data Analysis*, 189:107841.
- Engelke, S., Opitz, T., and Wadsworth, J. (2019). Extremal dependence of random scale constructions. *Extremes*, 22:623–666.
- Huser, R. and Wadsworth, J. L. (2019). Modeling spatial processes with unknown extremal dependence class. *Journal of the American Statistical Association*, 114(525):434–444.
- Richards, J., Sainsbury-Dale, M., Zammit-Mangion, A., and Huser, R. (2023). Neural Bayes estimators for censored inference with peaks-over-threshold models.
- Sainsbury-Dale, M., Zammit-Mangion, A., and Huser, R. (2024). Likelihood-Free Parameter Estimation with Neural Bayes Estimators. *The American Statistician*, 78(1):1–14.

- Wadsworth, J. L., Tawn, J. A., Davison, A. C., and Elton, D. M. (2017). Modelling across extremal dependence classes. *J. R. Statist. Soc. B*, 79:149–175.
- Zaheer, M., Kottur, S., Ravanbhakhsh, S., Póczos, B., Salakhutdinov, R., and Smola, A. J. (2017). Deep Sets. *Advances in Neural Information Processing Systems*, 30.

Parameter estimation: WCM

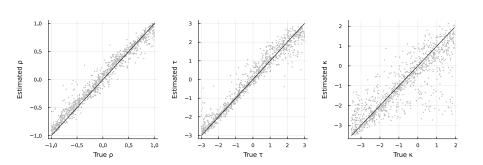
- c_t : Logistic copula with $\alpha_L \in (0,1)$
- c_b : Gaussian copula with $\rho \in (-1,1)$
- Weighting function: $\pi(u^*, v^*; \gamma) = (u^*v^*)^{\gamma}$ with $\gamma > 0$

Reparameterisation: $\tau_L = \text{logit}(\alpha_L)$ and $\kappa = \log(\gamma)$

- $\tau_L \sim \text{Unif}(-3,3)$, which results in $\alpha_L \in (0.05, 0.95)$
- $\rho \sim \text{Unif}(-1,1)$
- $\kappa \sim \text{Unif}(-3.51, 1.95)$, which results in $\gamma \in (-0.03, 7.03)$
- $N \sim \text{Unif}(\{100, 101, \dots, 1500\})$

Sample size N is treated as a random variable.

Assessment of NBEs



Assessment of NBEs: Uncertainty quantification

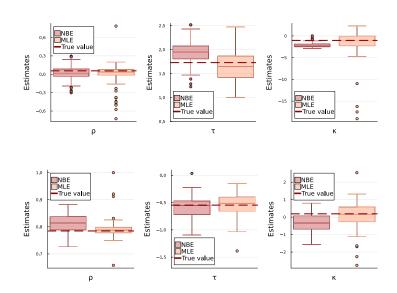
- Non-parametric bootstrap procedure:
 - B = 400 bootstrap samples
 - \bullet θ is re-estimated
 - 95% confidence intervals are obtained

Assessment of NBEs: Extremal dependence structure

Table 5: Coverage probability and average length of the 95% uncertainty intervals for $\chi(u)$ at levels $u = \{0.50, 0.80, 0.95\}$ obtained via a non-parametric bootstrap procedure averaged over 1000 models fitted using a NBE (rounded to 2 decimal places).

$\chi(u)$	Coverage	Length
$\chi(0.50)$	0.77	0.05
$\chi(0.80)$	0.79	0.08
$\chi(0.95)$	0.78	0.09

Comparison with MLE



Comparison with MLE

- Once trained, getting an estimate through this NBE takes on average 0.653 seconds.
- An estimate through MLE takes on average 3h and 12 minutes.
- This is a 17,663 fold speed-up